?
以数学(一)为例,数学(一)的考纲几乎涵盖了高等数学的所有内容,但是由于考查内容很多,题目的分布面广,所以纯粹一元函数的题目不是很多。因此对于一元微积分部分,解题能力的训练一定要抓住重点。通过对历年试题的分析,我们发现,一元函数部分必定有一两个难度较大的题目。题目所考查的内容和方法比较多地集中在微分中值定理,特别是拉格朗日定理及导数应用、定积分的性质,例如积分中值定理和变上限积分和简单应用等内容,所以对这一部分的解题方法,要做系统性训练。
?
不定积分的运算是高等数学的一个重要组成部分,但是在数学(一)中,纯粹不定积分的题目不常出现。在所有的试卷中,如果出现不定积分,一般是一个中等难度,但是有一定综合性的题目,解题方法会涉及到分部积分法和换元积分法,但是不会很复杂。大家在高等数学课程中学习过的许多技巧,例如有理式的部分分式分解,三角函数有理式求积分的各种代换,以及无理式求积分的各种技巧,在试题中很少出现。越是那些套路固定、计算量大的方法,在考研试题中就越少出现。因此对于不定积分,重点是熟练运用分部积分法与换元积分法,其他的技巧只做一般掌握就可以了。
?
多元函数微分学几乎每年都有一道大的题目,考核内容主要集中在微分学的概念与复合函数微分法。曲线积分和曲面积分,特别是第二型的线面积分,是每年必考的内容。对于许多考生来讲,线面积分的概念和计算是一个难点。这类题目虽然年年有,但是难度不大,变化不多。曲线积分一般要涉及到格林公式、积分与路径无关;曲面积分经常涉及到高斯公式。因此,对于上述多元微分学与积分学的内容,大家应当重点进行解题训练。
考研大纲 | 考研经验 | 考研真题 | 考研答案 | 考研院校 | 考研录取 |