出国留学网教师资格考试网为您整理“教师资格证小学数学说课:圆的面积”,希望对您有所帮助!
圆的面积说课稿
各位领导、各位老师:大家好!
我设计的课件《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。
本节课的教学目标是:
1. 要使学生明确圆面积的概念,理解和掌握圆面积公式的推导及应用。
2. 通过学生操作,发现推导圆面积的公式。
3. 结合知识的教学,渗透转化极限的数学思想。
本节课的重点是:圆面积概念的建立,公式的推导及应用。
难点是:转化和极限两种数学思想的渗透。
考虑到本节课是几何前后知识的重要纽带,教学内容相对抽象,学生的年龄特点,导致抽象逻辑思维较差,还是以形象直观思维为主,所以使用多媒体作为辅助教学手段,变抽象为直观,为学生提供丰富的感性材料,促进学生对知识的感知,帮助学生理解,激发学生学习的兴趣。
本课使用多媒体,设计时主要想突破以下几个问题:
一. 明确概念:
圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生必须明确区分。首先利用课件演示画圆,让学生直观感知,画圆留下的轨迹是条封闭的曲线。其次,演示填充颜色,并分离,让学生给它们分别起个名字,红色封闭的曲线长度是圆的周长,蓝色的是曲线围成的圆面,它的大小叫圆的面积。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。
二. 以旧促新
明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。
根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。
三. 转变图形
根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。考虑学生的实际情况,电脑先演示8等份圆,拼成一个近似的平行四边形,让学生观察它像什么图形?为什么说“像”平行四边形?让学生发表自己的意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎么样?电脑继续演示16等份的圆,放在一起比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎么样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学思想—极限思想的渗透。
四. 公式推导
平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c2 =πr h=r,平行四边形的面积=圆的面积,从而推导出S=πS=π×r×r =πr2。
此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,这里课件没有一一演示,而是留给学生充分的空间,让学生自由创新。正如《画 》谈“马一角”的文字,“看似未曾着墨处,烟波浩渺满日前.”结合学生拼成的图形并推导,采用不完全归纳法,发现都推导出S=πr2 ,通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。
五.公式的应用.
探究出公式,要学会应用,并能把利用所学的知识解决生活中的实际问题,培养学生解决实际问题的能力.先引导学生观察面积公式,思考要想计算圆的面积应该知道哪些条件?让学生讨论.练习安排了三个层次的练习:
第一:看图计算面积。主要是巩固新知,强化公式的应用。两个图一个是已知半径,另一个是已知直径。
第二:变式练习。学生根据公式一般认为计算圆的面积,必须知道半径,否则无法计算,这一题是已知r2=5平方厘米。根据目前知识,学生没有能力求出半径,怎么办?激起学生的认知冲突,引导学生讨论,就会发现,除了知道r,可以求出面积,若能知道r2,不必求出半径,直接利用公式计算面积,打破学生的思维定势,全面理解公式,达到对公式的进一步认识。
第三:实践练习。圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?让学生讨论,你有哪些方案?并留给学生课后去实践。这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔。
至此,课件设计的初衷,概念—旧知—转化—推导—应用五个任务就算完成了,这也是设计时个人的一些想法,敬请大家批评指正,谢谢!
教师资格证考试频道推荐:
教师资格证说课稿 | 教师考试备考辅导 | 教育学资料 | 教育心理学资料 | 综合素质资料 | 教育知识与能力 |