时光飞逝,转眼暑假即将过去。下面是由出国留学网小编为大家整理的“八年级暑假作业数学答案(浙教版)”,欢迎大家阅读,仅供大家参考。
练习一
AADAC x<3 x="">3 0,1,2 k<-1 2="" p="">-6 x≥-2 x>2数轴,解不等式①得 x<1 1="" -2="" x="">-2 解集为-2
解:(1)设租36座的车x辆.
据题意得: 36x<42(x-1)
36x>42(x-2)+30
解得: x>7
x<9
∴7
由题意x应取8.
则春游人数为:36×8=288(人).
(2)方案①:租36座车8辆的费用:8×400=3200元;
方案②:租42座车7辆的费用:7×440=3080元;
方案③:因为42×6+36×1=288,租42座车6辆和36座车1辆的总费用:6×440+1×400=3040元.
所以方案③:租42座车6辆和36座车1辆最省钱.
练习二
CDAAD 1 k<2 3,2,1,0 m≤2 10 解不等式①得 x<-1 解不等式②得 x≥3 ∴无解
解: 2x+y=m①
x+4y=8②
由②×2-①,得7y=16-m,
∴y=16-m/7
∵y是正数,即y>0,
∴16-m/7 >0
解得,m<16;
由①×4-②,得
7x=4m-8,
∵x是正数,即x>0,
∴4m-8>0,
解得,m>2;
综上所述,2
解:(1)设甲、乙两种花木的成本价分别为x元和y元.
由题意得: 2x+3y=1700
3x+y=1500
解得: x=400
y=300
(2)设种植甲种花木为a株,则种植乙种花木为(3a+10)株.
则有: 400a+300(3a+10)≤30000
(760-400)a+(540-300)(3a+10)≥21600
解得:160/9≤a≤270/13
由于a为整数,
∴a可取18或19或20.
所以有三种具体方案:
①种植甲种花木18株,种植乙种花木3a+10=64株;
②种植甲种花木19株,种植乙种花木3a+10=67株;
③种植甲种花木20株,种植乙种花木3a+10=70株.
(1) 1.2(300-x)m 1.54mx 360m+0.34mx
(2) 1.2(300-x)m≥4/5×300m
1.54mx>1/2×300m
解得97又31/77(这是假分数)
∵x为正整数,
∴x可取98,99,100.
∴共有三种调配方案:
①202人生产A种产品,98人生产B种产品;
②201人生产A种产品,99人生产B种产品;
③200人生产A种产品,100人生产B种产品;
∵y=0.34mx+360m,
∴x越大,利润y越大,
∴当x取最大值100,即200人生产A种产品,100人生产B种产品时总利润最大.
练习三
CBBCD y/x-2 2 x>3 7/10 -3/5 m+n/m-n 8/x+2 原式=x+2y/x-2y 代入=3/7
原式=x+3/x 代入=1+根号3
1/a-1/b=3,(b-a)/ab=3
b-a=3ab
a-b=-3ab
2a+3ab-2b)/(a-2ab-b)
=[2(a-b)+3ab]/[(a-b)-2ab]
=(-6ab+3ab)/(-3ab-2ab)
=-3ab/(-5ab)
=3/5
练习四
BAABA -1/5 2/3 1/a 2 1 2/3 x=4 x=2/3 原式=1/a 代入=根号3-1/2
yˉ1+xˉ1y
即求x/y+y/x
=(x2+y2)/xy
=[(x-y)2+2xy]/xy
=11
x2+y2=3xy
(x2+y2)2=(3xy)2
x四次方+y四次方+2x2y2=9x2y2
x四次方+y四次方=7x2y2
原式=x2/y2+y2/x2
=(x四次方+y四次方)/x2y2
=7x2y2/x2y2
=7
(1)设该种纪念品4月份的销售价格为x元.
根据题意得2000/x=(2000+700/0.9x)-20,
解之得x=50,
经检验x=50所得方程的解,
∴该种纪念品4月份的销售价格是50元;
(2)由(1)知4月份销售件数为2000/50=40件,
∴四月份每件盈利800/40=20元,
5月份销售件数为40+20=660件,且每件售价为50×0.9=45,每件比4月份少盈利5元,为15元,所以5月份销售这种纪念品获利60×15=900元.
练习五
BDDBC y=-3/x -3 m<1 y=90/x c
将点A(-1,2-k2)代入y=k/x 得
2-k2=-k
(k+1)(k-2)=0
∵k>0
∴k=2
∴A(-1,-2)
∴y=2/x
将点A(-1,-2)代入y=ax
-2=-a
a=2
∴y=2x
∵y=k/x与y=3/x关于x对称
∴k=-3
∴y=-3/x
将点A(m,3)代入y=-3/x
3=-3/m
m=-1
∴A(-1,3)
将点A(-1,3)代入y=ax+2
-a+2=3
-a=1
a=-1
(1)将点A(1,3)代入y2=k/x
3=k/1
k=3
∴y=3/x
将点B(-3,a)代入y=3/x
a=3/-3
a=-1
∴B(-3,-1)
将点A(1,3)和B(-3,-1)代入
m+n=3
-3m+n=-1
解之得 m=1 n=2
∴y=x+2
(2)-3≤x<0或x≥1
练习六
CBCDB 1,y=-12/x+1,y=8/x,16/3,1/3大于等于y大于等于2,4
12.
解:(1)∵将点A(-2,1)代入y=m/x
∴m=(-2)×1=-2.
∴y=-2/x .
∵将点B(1,n)代入y=-2/x
∴n=-2,即B(1,-2).
把点A(-2,1),点B(1,-2)代入y=kx+b
得 -2k+b=1
k+b=-2
解得 k=-1
b=-1
∴一次函数的表达式为y=-x-1.
(2)∵在y=-x-1中,当y=0时,得x=-1.
∴直线y=-x-1与x轴的交点为C(-1,0).
∵线段OC将△AOB分成△AOC和△BOC,
∴S△AOB=S△AOC+S△BOC=1/2×1×1+1/2×1×2=1/2+1=3/2
13.
解:(1)命题n:点(n,n2)是直线y=nx与双曲线y=n3/x的一个交点(n是正整数);
(2)把 x=n
y=n2
代入y=nx,左边=n2,右边=n?n=n2,
∵左边=右边,
∴点(n,n2)在直线上.
同理可证:点(n,n2)在双曲线上,
∴点(n,n2)是直线y=nx与双曲线y=n3/x 的一个交点,命题正确.
解:(1)设点B的纵坐标为t,则点B的横坐标为2t.
根据题意,得(2t)2+t2=(根号5)2
∵t<0,
∴t=-1.
∴点B的坐标为(-2,-1).
设反比例函数为y=k1/x,得
k1=(-2)×(-1)=2,
∴反比例函数解析式为y=2/x
(2)设点A的坐标为(m,2/m).
根据直线AB为y=kx+b,可以把点A,B的坐标代入,
得 -2k+b=-1
mk+b=2/m
解得 k=1/m
b=2-m/m
∴直线AB为y=(1/m)x+2-m/m.
当y=0时,
(1/m)x+2-m/m=0,
∴x=m-2,
∴点D坐标为(m-2,0).
∵S△ABO=S△AOD+S△BOD,
∴S=1/2×|m-2|×|2/m|+1/2×|m-2|×1,
∵m-2<0,2 m="">0,
∴S=2-m/m+2-m/2,
∴S=4-m2/2m.
且自变量m的取值范围是0
小编精心推荐
八年级暑假作业答案:语文 | 数学 | 英语 | 物理 | 历史
小编精心推荐