沙巴体育官网_新沙巴体育投注【app平台登录】

图片
出国留学网

目录

高三上册数学期中试卷及答案精选

【 liuxue86.com - 实用资料 】

  数学是一门很重要的学科,即将参加高考的同学们已经做好准备上战场了吗?下面出国留学网小编整理了高三上册数学期中试卷及答案精选,欢迎阅读参考。

  高三上册数学期中试卷及答案精选(一)

  一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题意要求的。

  1、设集合 ,集合 ,则 等于( )

  A. (1,2) B. (1,2] C. [1,2) D. [1,2]

  2、已知 和 ,若 ,则 ( )

  A.5 B.8     C.     D.64

  3、等比数列 的各项为正数,且 ( )

  A.12   B.10    C.8     D.2+

  4、如图1,已知ABCDEF是边长为1的正六边形,

  则 的值为( )

  A. B. C. D.

  5、将函数 的图象向右平移 个单位长度后,所得到的图象关于 轴对称,则 的最小值是( )

  A.    B.    C.     D.

  6、已知定义域为R的函数 不是偶函数,则下列命题一定为真命题的是( )

  A. B.

  C. D.

  7、下列四个结论:①设a,b为向量,若|a?b|=|a||b|,则a∥b恒成立;

  ②命题“若 ”的逆命题为“若 ”;

  ③“命题 为真”是“命题 为真”的充分 不必要条件;

  其中正确结论的个数是( )

  A.1个  B.2个   C.3个 D.0个

  8、对于函数 ,部分 与 的对应关系如下表:

  1 2 3 4 5 6

  2 4 7 5 1 8

  数列 满足: ,且对于任意 ,点 都在函数 的图像上,则 ( )

  A.4054   B.5046 C.5075   D.6047

  9、设函数 的图像在点 处切线的斜率为 ,则函数

  的部分图像为( )

  10、已知向量 , 满足 ,且关于 的函数

  在实数集 上单调递增,则向量 , 的夹角的取值范围是 (  )

  A. B. C. D.

  11、如图2是函数 图像的一部分,对不同的

  ,若 ,有 ,则( )

  A. 在 上是增函数

  B. 在 上是减函数

  C. 在 上是增函数

  D. 在 上是减函数

  12、若关于 的不等式 的解集恰好是 ,则 的值为( )

  A.    B.   C.    D.

  二、填空题:本大题共4题,每小题5分,共20分. 把答案填在答题卡的相应位置上。

  13、若 是纯虚数,则 的值为 。

  14、若幂函数 过点 ,则满足不等式 的实数 的取值范围是 。

  15、函数 的图象与 轴所围成的封闭图形面积为 。

  16、已知函数 是定义在R上的不恒为零的函数,且对于任意实数 满足: , , , ,考查下列结论: ① ;② 为奇函数;③数列 为等差数列;④数列 为等比数列。

  以上命题正确的是 。

  三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

  17、(本小题10分)

  设 :关于x的不等式 的解集是 ; :函数y= 的定义域为R.若 或 是真命题, 且 是假命题,求实数 的取 值范围.

  18、(本小题12分)

  已知向量 ,向量 ,函数

  (Ⅰ)求 的最小正周期 ;

  (Ⅱ)已知 , , 分别为 内角 , , 的对边, 为锐角, , ,且 恰是 在 上的最大值,求 , .

  19、(本小题12分)

  已知数列 与 满足: , 且 , .

  (Ⅰ)求 的值;

  (Ⅱ)令 , ,证明: 是等比数列;

  20、(本小题12分)

  罗源滨海新城建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间 的桥面和桥墩,经预测,一个桥墩的工程费用为32万元,距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用 为y万元.

  (1)试写出y关于x的函数关系式;

  (2)当m=96米时,需新建多少个桥墩才能使余下工程的费用y最小?

  21、(本小题12分)

  在 中,内角 的对边分别为 ,已知 ,且 ,

  (Ⅰ)求 的面积.

  (Ⅱ)已知等差数列{an}的公差不为零,若a1cosA=1,且a2,a4,a8成等比数列,

  求{ }的前n项 和Sn.

  22、(本小题12分)

  已知函数 , ,令 ,

  其中 是函数 的导函数。

  (Ⅰ)当 时,求 的极值;

  (Ⅱ)当 时,若存在 ,使得

  恒成立,求 的取值范围.

  参考答案

  题号 1 2 3 4 5 6 7 8 9 10 11 12

  答案 B A B C D C A D B C A D

  一、选择题:(每小题5分,共60分)

  二、填空题:(每小题5分,共20分)

  13、 14、

  15、 16、 ②③④

  三、解答题:(本大题共6小题,共70分)

  高三上册数学期中试卷及答案精选(二)

  第Ⅰ卷(选择题 共60分)

  一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

  1.若集合 , ,则 ( )

  A. B. C. D.

  2.已知复数 ,若 是实数,则实数 的值为 ( )

  A. B. C. D.

  3.若定义在 上的函数 满足 且 则 等于 ( )

  A. 1 B. C.2 D.

  4. 执行如图所示的程序框图,若输入如下四个函数:

  ① ,② ,

  ③ , ④ ,则输出的函数是 (   )

  A. B.

  C. D.

  5.以下判断正确的是 ( )

  A.函数 为 上可导函数,则 是 为函数 极值点的充要条件

  B.命题“存在 ”的否定是“任意 ”

  C.“ ”是“ 函数 是偶函数”的充要条件

  D.命题“在 中,若 ”的逆命题为假命题

  6.一个长方体被一个平面截去一部分后,所剩几何体的三视图如图所示(单位:cm),

  则该几何体的体积为

  A.120 cm3 B.100 cm3 C.80 cm3 D.60 cm3

  7.若数列 的通项公式为 ,则数列 的前 项和为 ( )

  A. B. C. D.

  8. 设 ,则 ( )

  A. B. C. D.

  9.函数 的图象向右平移 个单位后,与函数

  的图象重合,则 的值为 ( )

  A?. B . C. D.

  10.如图所示,两个不共线向量 的夹角为 , 分别为 的中点,点 在直线 上,

  且 ,则 的最小值为( )

  A. B. C. D.

  11.椭圆 : 的左、右焦点分别为 ,焦距为 .若直线y= 与椭圆 的一个交点M满足 ,则该椭圆的离心率为( )

  A. B. C. D.

  12.已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是 (   )

  A. B. C. D.

  第Ⅱ卷(非选择题 共90分)

  二、填空题:本大题共4小题,每小题5分,共20分.

  13.已知曲线 平行,则实数 .

  14.已知向量 .

  15.已知 ,则 .

  16.已知点P(x,y)满足线性约束条件 ,点M(3,1), O为坐标原点, 则 的

  最大值为________.

  三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.

  17.(本小题12分) 已知函数 .

  (Ⅰ)求 的最小正周期及对称中心; (Ⅱ)若 ,求 的最大值和最小值.

  外语

  数学 优 良 及格

  优 8 m 9

  良 9 n 11

  及格 8 9 11

  18.(本小题12分)某校高三文科学生参加了9月的模拟考试,学校为了了解高三文科学生的数学、外语成绩,抽出100名学生的数学、外语成绩统计,其结果如下表:

  (1)若数学成绩优秀率为35%,求 的值;

  (2)在外语成绩为良的学生中,已知 ,求数学成绩

  优比良的人数少的概率.

  19.(本小题12分)

  如图,三棱柱 中, , 四边形

  为菱形, , 为 的中点, 为 的中点.

  (1)证明:平面 平面 ;

  (2) 若 求 到平面 的距离.

  20.(本小题12分)

  已知圆 经过点 , ,并且直线 平分圆 .

  (1)求圆 的标准方程;

  (2)若过点 ,且斜率为 的直线 与圆 有两个不同的交点 .

  ①求实数 的取值范围;②若 ,求 的值.

  21. (本小题12分)

  设函数 , .

  (1)求函数 在区间 上的值域;

  (2)证明:当a>0时, .

  四.选考题(本小题10分)

  请从下列两道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卡上注明题号。

  22. (本小题满分10分)选修4-4:坐标系与参数方程

  在平面直角坐标系 中,以原点 为极点, 轴的正半轴为极轴,建立极坐标系,曲线 的参数方程为 ( 为参数),曲线 的极坐标方程为 .

  (Ⅰ)求曲线 的普通方程和曲线 的直角坐标方程;

  (Ⅱ)设 为曲线 上一点, 为曲线 上一点,求 的最小值.

  23.(本小题满分10分)选修4—5:不等式选讲

  已知函数 ,且 的解集为 .

  (Ⅰ)求 的值;

  (Ⅱ)若 ,且 ,求证: .

  参考答案

  第Ⅰ卷(选择题 共60分)

  一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

  1.若集合 , ,则 ( A )

  A. B. C. D.

  2.已知复数 ,若 是实数,则实数 的值为 ( D )

  A. B. C. D.

  3.若定义在 上的函数 满足 且 则 等于( A )

  A. 1 B. C.2 D.

  4. 执行如图所示的程序框图,若输入如下四个函数:

  ① ,② ,

  ③ , ④ ,

  则输出的函数是 ( D  )

  A. B.

  C. D.

  5.以下判断正确的是 ( C )

  A.函数 为 上可导函数,则 是 为函数 极值点的充要条件

  B.命题“存在 ”的否定是“任意 ”

  C.“ ”是“函数 是偶函数”的充要条件

  D.命题“在 中,若 ”的逆命题为假命题

  6.一个长方体被一个平面截去一部分后,所剩几何体的三视图如图所示(单位:cm),则该几何体的体积为 ( B )

  A.120 cm3 B.100 cm3 C.80 cm3 D .60 cm3

  7. 若数 列 的通项公式为 ,则数列

  的前 项和为 ( C )

  A. B.

  C. D.

  8. 设 ,则 ( C )

  A. B. C. D.

  9.函数 的图象向右平移 个单位后,与函数 的图象重合,则 的值为 ( B )

  A?. B. C. D.

  10.如图所示,两个不共线向量 , 的夹角为 ,

  分别为 与 的中点,点 在直线 上,

  且 ,则 的最小值为( B )

  A. B. C. D.

  11.椭圆 : 的左、右焦点分别为 ,焦距为 .若直线y=

  与椭圆 的一个交点M满足 ,则该椭圆的离心率为( D )

  A. B. C. D.

  12.已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是 ( B  )

  A. B. C. D.

  第Ⅱ卷(非选择题 共90分)

  二、填空题:本大题共4小题,每小题5分,共20分.

  13.已知曲线 平行,则实数 ___答:2

  14.已知向量 .答:-3

  15.已知 ,则 .答:

  16.已知点P(x,y)满足线性约束条件 ,点M(3,1), O为坐标原点,则 的最大值为__________.答:11

  三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.

  17.(本小题12分)

  已知函数 .

  (Ⅰ)求 的最 小正周期及对称中心;

  (Ⅱ)若 ,求 的最大值和最小值.

  解:(Ⅰ) …4分

  ∴ 的最小正周期为 , ……5分

  令 ,则 ,

  ∴ 的对称中心为 ……6分

  (Ⅱ)∵ ∴ ......8分

  ∴ ∴ .......10分

  ∴当 时, 的最小值为 ;当 时, 的最大值为 ……12分

  18.(本小题12分)

  某校高三文科学生参加了9月的模拟考试,学校为了了解高三文科学生的数学、外语成绩,抽出100名学生的数学、外语成绩统计,其结果如下表:

  外语

  数学 优 良 及格

  优 8 m 9

  良 9 n 11

  及格 8 9 11

  (1)若数学成绩优秀率为35%,求 的值;

  (2)在外语成绩为良的学生中,已知 ,求数学成绩优比良的人数少的概率.

  解:(1)

  又 ,

  (2)由题, 且 , 满足条件的 有

  共14种,

  记 :”在外语成绩为良的学生中,数学成绩优比良的人数少”,则M包含的基本事件有

  共6种,

  .

  19.(本小题12分)

  如图,三棱柱 中, ,四边形 为菱形,

  , 为 的中点, 为 的中点.

  (1)证明:平面 平面 ;

  (2) 若 求 到平面 的距离.

  解:(1) 四边形 为菱形, ,

  ,

  又 , ,又

  平面 , 平面 平面 .

  (2)设 到平面 的距离为 ,设 ,

  连接 ,则 ,且 ,

  ,

  ,

  ,

  ,即 到平面 的距离为 .

  20.(本小题12分)

  已知圆 经过点 , ,并且直线 平分圆 .

  (1)求圆 的标准方程;

  (2若过点 ,且斜率为 的直线 与圆 有两个不同的交点 .

  ①求实数 的取值范围;

  ②若 ,求 的值.

  解:(1) 中点为 , , 中垂线的方程为 .

  由 解得圆心 ,

  圆 的标准方程为

  (2)设 ,圆心 到 的距离

  ①由题 即 ,解得

  ②由 得 ,

  设 ,则 ,

  ,

  =

  解得 ,此时 ,

  21. (本小题12分)

  设函数 , .

  (1)求函数 在区间 上的值域;

  (2)证明:当a>0时, .

  解: , ,

  在 上, , 单调递减;在 上, , 单调递增.

  当 [-1,1]时, ,

  又

  .

  (2) , ,即 ,

  当 时该方程有唯一零点记为 ,即 ,

  ;

  .

  四.选考题(本小题 10分)

  请从下列二道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卡上注明题号。

  22. (本小题满分10分)选修4-4:坐标系与参数方程

  在平面直角坐标系 中,以原点 为极点, 轴的正半轴为极轴,建立极坐标系,曲线 的参数方程为 ( 为参数),曲线 的极坐标方程为 .

  (Ⅰ)求曲线 的普通方程和曲线 的直角坐标方程;

  (Ⅱ)设 为曲线 上一点, 为曲线 上一点,求 的最小值.

  解:(1)由 消去参数 得,曲线 的普通方程得 .

  由 得,曲线 的直角坐标方程为 ....5分

  (2)设 ,则点 到曲线 的距离为

  ...........8分

  当 时, 有最小值0,所以 的最小值为0...................10分

  23.(本小题满分10分)选修4—5:不等式选讲

  已知函数 ,且 的解集为 .

  (Ⅰ)求 的值;

  (Ⅱ)若 ,且 ,求证: .

  解:(Ⅰ)因为 ,

  所以 等价于 ,…2分

  由 有解,得 ,且其解集为 . …4分

  又 的解集为 ,故 .…(5分)

  (Ⅱ)由(Ⅰ)知 ,又 ,…7分∴ ≥ =9. …9分

  (或展开运用基本不等式)

  ∴ ….10分

  高三上册数学期中试卷及答案精选(三)

  第I卷(选择题 共60分)

  一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.

  1.若集合 , ,则 ( )

  A. B. C. D.

  2.已知复数 ,若 是实数,则实数 的值为 ( )

  A. B. C. D.

  3.以下判断正确的是 ( )

  .函数 为 上可导函数,则 是 为函数 极值 点的充要条件

  .命题“ ”的否定是“ ”

  C.“ ”是“函数 是偶函数”的充要条件

  D. 命题“在 中,若 ,则 ”的逆命题为假命题

  4.一个长方体被一个平面截去一部分后所剩几何体的三视图如图所示(单位:cm),则该几何体的体积为 (   )

  A.120 cm3 B.100 cm3 C.80 cm3 D.60 cm3

  5.由曲线 ,直线 及坐标轴所围成图形的面积为

  ( )

  A. B. C. D.

  6.设等差数列 的前 项和为 ,若 , , ,则 ( )

  A. B. C. D.

  7.我国古代数 学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今 有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出的结果 ( )

  A. B. C. D.

  8.设 ,则 ( )

  A. B. C. D.

  9.已知函数 ,则 的图象大致为 ( )

  A B C D

  10.函数 的图象向右平移 个单位后,与函数 的

  图象重合,则 的值为 ( )

  A?. B. C. D.

  11.椭圆 : 的左、右焦点分别为 ,焦距为 . 若直线y= 与椭圆 的一个交点M满足 ,则该椭圆的离心率等于 ( )

  A. B. C. D.

  12.已知定义在R上的函数 满足: 且 , ,则方程 在区间 上的所有实根之和为 ( )

  A. B . C. D.

  第Ⅱ卷(非选择题 共90分)

  二、填空题:本大题共4小题,每小题5分,共 20分.

  13.已知向量 .

  14.已知 ,则 .

  15.已知 满足约束条件 若 的最小值为 ,则 .

  16.在 中,内角 的对边分别为 ,已知 , ,

  则 面积的最大值为 .

  三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.

  17.(本小题满分12分)

  已知函数 .

  (Ⅰ)求 的最小正周期及对称中心;

  (Ⅱ)若 ,求 的最大值和最小值.

  18.(本小题满分12分)

  如图,在直三棱柱 中, , 是棱 上

  的一点, 是 的延长线与 的延长线的交点,且 ∥平面 .

  (Ⅰ)求证: ;

  (Ⅱ)求二面角 的平面角的正弦值.

  19.(本小题满分12分)

  随着苹果7手机的 上市,很多消费者觉得价格偏高,尤其是一部分大学生可望而不可及,因此“国美在线”推出无抵押分期付款的购买方式,某店对最近100位采用分期付款的购买者进行统计,统计结果如下表所示.

  付款方式 分1期 分2期 分3期 分4期 分5期

  频数 35 25

  10

  已知分3期付款的频率为0.15,并且销售一部苹果7手机,顾客分1期付款,其利润为1000元;分2期或3期付款,其利润为1500元;分4期或5期付款,其利润为2000元,以频率作为概率.

  (Ⅰ)求 , 的值,并求事件 :“购买苹果7手机的3位顾客中,至多有1位分4期付款”的概率;

  (Ⅱ)用 表示销售一部苹果7手机的利润,求 的分布列及数学期望 .

  20.(本小题满分12分)

  已知抛物线 : ,直线 交 于 两点, 是线段 的中点,过点 作 轴的垂线交 于点

  (Ⅰ)证明:抛物线 在点 的切线与 平行;

  (Ⅱ)是否存在实数 ,使以 为直径的圆 经过点 ?若存在,求 的值;若不存在,说明理由.

  21.(本小题满分12分)

  已知函数 .

  (Ⅰ)当 时,求 的单调区间;

  (Ⅱ)若函数 在其定义域内有两个不同的极值点.

  (ⅰ)求 的取值范围;

  (ⅱ)设两个极值点分别为 ,证明: .

  请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.

  22. (本小题满分10分)选修4-4:坐标系与参数方程

  在平面直角坐标系 中,以原点 为极点, 轴的正半轴为极轴,建立极坐标系,曲线 的参数方程为 ( 为参数),曲线 的极坐标方程为 .

  (Ⅰ)求曲线 的普通方程和曲线 的直角坐标方程;

  (Ⅱ)设 为曲线 上一点, 为曲线 上一点,求 的最小值.

  23.(本小题满分10分)选修4—5:不等式选讲

  已知函数 ,且 的解集为 .

  (Ⅰ)求 的值;

  (Ⅱ)若 ,且 ,求证: .

  参考答案

  一、选择题(本题共12小题,每小题5分,共60分。)

  题号 1 2 3 4 5 6 7 8 9 10 11 12

  答案 A D C B C C A C A B D B

  二、填空题(本大题共4小题,每小题5分,共20分)

  13. 14. 15. 16.

  三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)

  17.(本小题满分12分)

  已知函数 .

  (Ⅰ)求 的最小正周期及对称中心;

  (Ⅱ)若 ,求 的最大值和最小值.

  解:(Ⅰ) …4分

  ∴ 的最小正周期为 , ……5分

  令 ,则 ,

  ∴ 的对称中心为 ……6分

  (Ⅱ)∵ ∴ ......8分

  ∴ ∴ .......10分

  ∴当 时, 的最小值为 ;当 时, 的最大值为 ……12分

  18.(本小题满分12分)

  如图,在直三棱柱 中, , 是棱 上

  的一点, 是 的延长线与 的延长线的交点, 且 ∥平面 .

  (Ⅰ)求证: ;

  (Ⅱ)求二面角 的平面角的正弦值.

  解:(Ⅰ)连接 交 于 ,连接 .

  ∵ ∥平面 , 面 ,面 面

  ∴ ∥ ……………2分

  又∵ 为 的中点,

  ∴ 为 中点∴ 为 中点 ……………4分

  ∴ ∴ ……………5分

  (Ⅱ)∵在直三棱柱 中,

  ∴ ……………6分

  以 为坐标原点,以 , 所在直线建立空间直角坐标系如图所示。

  由(Ⅰ)知 为 中点

  ∴点 坐标分别为

  , , ,

  设平面 的法向量

  ∵ 且

  ∴ 取 ∴ ……………8 分

  同理:平面 的法向量 ……………10分

  设二面角 平面角为

  则 , ∴ ……………12分

  19.(本小题满分12分)

  随着苹果7手机的上市,很多消费者觉得价格偏高,尤其是一部分大学生可望而不可及,因此“国美在线”推出无抵押分期付款的购买方式,某店对最近100位采用分期付款的购买者进行统计,统计结果如下表所示.

  付款方式 分1期 分2期 分3期 分4期 分5期

  频数 35 25

  10

  已知分3期付款的频率为0.15,并且销售一部苹果7手机,顾客分1期付款,其利润为1000元;分2期或3期付款,其利润为1500元;分4期或5 期付款,其利润为2000元,以频率作为概率.

  (Ⅰ)求 , 的值,并求事件 :“购买苹果7手机的3位顾客中,至多有1位分4期付款”的概率;

  (Ⅱ)用 表示销售一部苹果7手机的 利润,求 的分布列及数学期望 .

  解:(Ⅰ)由 ,得 因为 所以 ………3分

  ………6分

  (Ⅱ)设分期付款的分期数为 ,则

  …8分

  的所有可能取值为1000,1500,2000.

  ………10分

  所以 的分布列为

  1000 1500 2000

  P 0.35 0.4 0.25

  ………12分

  20.(本小题满分12分)

  已知抛物线 : ,直线 交 于 两点, 是线段 的中点,过点 作 轴的垂线交 于点

  (Ⅰ)证明:抛物线 在点 的切线与 平行;

  (Ⅱ)是否存在实数 ,使以 为直径的圆 经过点 ,若存在,求出 的值;若不存在,请说明理由.

  解:(Ⅰ)解法一:设 , ,把 代入 得 ,

  得 .

  ∵ , 点的坐标为 .     ………………………2分

  ∵  ∴ ,

  即抛物线在点 处的切线的斜率为 .            ………………………4分

  ∵直线 : 的的斜率为 ,∴ .        ……………………6分

  解法二:设 , ,把 代入 得 ,

  得 .

  ∵ , 点的坐标为 .     …… ………………2分

  设抛物线在点 处的切线 的方程为 ,

  将 代入上式得 ,        ………………………4分

  直线 与抛物线 相切, , , 即 .                    …………………6分

  (Ⅱ)假设存在实数 ,存在实数 使 为直径的圆 经过点 .

  是 的中点, .

  由(Ⅰ)知

  轴, .  …………………8分

  ∵

  .     ……………………10分

  ,∴ ,

  故,存在实数 使 为直径的圆 经过点 .      ………………12分

  21.(本小题满分12分)

  已知函数

  (Ⅰ)当 时,求 的单调区间;

  (Ⅱ)若函数 在其定义域内有两个不同的极值点.

  (ⅰ)求 的取值范围;

  (ⅱ)设两个极值点分别为 ,证明: .

  解:(Ⅰ)当 时, ;

  函数 的定义域为 ,

  当 时, ;当 时, .

  所以, 在 上单调递减;在 上单调递增. ………………4分

  (Ⅱ) (ⅰ)依题意,函数 的定义域为 ,

  所以方程 在 有两个不同根.

  即,方程 在 有两个不同根.

  (解法一)转化为,函数 与函数

  的图像在 上有两个不同交点,如图.

  可见,若令过原点且切于函数 图像的直线斜率为 ,

  只须 . ………………6分

  令切点 ,所以 ,又 ,所以 ,

  解得, ,于是 ,

  所以 . ………………8分

  (解法二)令 ,从而转化为函数 有两个不同零点,

  而 ( )

  若 ,可见 在 上恒成立,所以 在 单调增,

  此时 不可能有两个不同零点. ………………5分

  若 ,在 时, ,在 时, ,

  所以 在 上单调增,在 上单调减,

  从而 ………………6分

  又因为在 时, ,在在 时, ,于是只须:

  ,即 ,所以 . ………………7分

  综上所述, ………………8分

  (ⅱ)由(i)可知 分别是方程 的两个根,

  即 , ,

  不妨设 ,作差得, ,即 .

  原不等式 等价于

  令 ,则 , ………………10分

  设 , ,

  ∴函数 在 上单调递增,

  ∴ ,

  即不等式 成立,

  故所证不等式 成立. ………………12分

  请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.

  22. (本小题满分10分)选修4-4:坐标系与参数方程

  在平面直角坐标系 中,以原点 为极点, 轴的正半轴为极轴,建立极坐标系,曲线 的参数方程为 ( 为参数),曲线 的极坐标方程为 .

  (1)求曲线 的普通方程和曲线 的直角坐标方程;

  (2)设 为曲线 上一点, 为曲线 上一点,求 的最小值.

  解:(1)由 消去参数 得,曲线 的普通方程得 .....3分

  由 得,曲线 的直角坐标方程为 ....5分

  (2)设 ,则点 到曲线 的距离为

  ...........8分

  当 时, 有最小值0,所以 的最小值为0 .............10分

  23.(本小题满分10分)选修4—5:不等式选讲

  已知函数 ,且 的解集为 .

  (Ⅰ)求 的值;

  (Ⅱ)若 ,且 ,求证: .

  解:(Ⅰ)因为 ,

  所以 等价于 ,

  由 有解,得 ,且其解集为 .

  又 的解集为 ,故 ............5分

  (Ⅱ)由(Ⅰ)知 ,又 , ∴ ≥ =9.

  (或展开运用基本不等式)

  高三上册数学期中试卷及答案精选(四)

  第Ⅰ卷(共75分)

  一、选择题:本大题共1 5小题,每小题5 分,共75分,在每小题给出的四个选项中,只有一项是正确的.

  1.设集合 , ,则 等于( )

  A. B. C. D.

  2.若复数 的实部为 ,且 ,则复数 的虚部是( )

  A. B. C. D.

  3.若函数 , 则 ( )

  A. B. C. D.

  4.已知 则 , 的夹角是( )

  A. B. C. D.

  5.若变量 满足约束条件 的最大值和最小值分别为( )

  A. B. C. D.

  6. 在等比数列 中, , ,则 ( )

  A. B. C. D.

  7.下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的 是(  )

  A. B. C. D.

  8.已知命题 对于 恒有 成立;命题 奇函数 的图像必过原点,则下列结论正确的是( )

  A. 为真 B. 为真 C. 为真 D. 为假

  9.已知函数 与 ,它们的图像有个交点的横坐标为 ,则 的值为( )

  A. B. C. D.

  10.若偶函数 在 上单调递减, ,则 满足( )

  A. B. C. D.

  11.将函数 的图象向右平移 个单位,再向上平移1个单位后得到的函数图象对应的解析式为

  A. B. C. D.

  12.在平行四边形ABCD中, ,点 分别在 边上,且 ,则 =( )

  A. B. C. D.

  13. 已知 , 是两条不同的直线, , 是两个不同的平面,则下列命题正确的是( )

  A.若 , ,则 B.若 , ,则

  C.若 , ,则 D.若 , ,则

  14.点 从点 出发,按逆时针方向沿周长为 的图形运动一周, 两点连线的距离 与点 走过的路程 的函数关系如图,那么点 所走的图形是( )

  15. 已知函数 ,若函数 恰有4个零点,则 的取值范围是( )

  (A) (B) (C) (D)

  第Ⅱ卷(非选择题,共75分)

  二、填空题:本大题共5个小题,每小题5分,共25分.

  16.某几何体三视图如图所示,则该几何体的体积为___________

  17.在平面直角坐标系中,角 终边过点 ,

  则 的值为. ________________.

  18.设 ,向量 , , ,且 , ,则 = .

  19.已知正数 , 满足 ,则 的最小值为____________.

  20.给出下列命题:

  ①“若 ,则 有实根”的逆否命题为真命题;

  ②命题“ ”为真命题的一个充分不必要条件是 ;

  ③ 命题“ ,使得 ”的否定是真命题;

  ④命题p:函数 为偶函数;命题q:函数 在 上为增函数,则 为真命题

  其中正确命题的序号是 .(把你认为正确命题的序号都填上)

  三、解答题(本大题包括4小题,共75分,解答应写出文字说 明,证明过程或演算步骤) .

  21. (本小题满分12分)

  已知

  (Ⅰ)求 的最小值及此时 的取值集合;

  (Ⅱ)将 的图象向右平移 个单位后所得图象关于 轴对称,求 的最小值.

  22. (本小题满分12分)

  在等差数列 中, ,其前 项和为 ,等比数列 的各项均为正数, ,公比为 ,且 , .

  (Ⅰ)求 与 ;

  (Ⅱ)设数列 满足 ,求 的前 项和 .

  23. 某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥1 0)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?

  (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用= )

  24. (本小题满分14分)

  设

  (Ⅰ)求 的单调区间和最小值;

  (Ⅱ)讨论 与 的大小关系;

  (Ⅲ)求 的取值范围,使得 < 对任意 >0成立.

  参考答案

  一、 选择题

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  C D C B D A B C D B B C A C D

  二、 填空题

  16. 17. 18. 1 9. 20. ①③

  三、解答题

  21. (Ⅰ)

  ∴ 的最小值为-2,此时 , ,

  ∴ 的取值集 合为:

  (Ⅱ) 图象向右平移 个单位后所得图象对应的解析式为

  其为偶函数,那么图象关于直线 对称,故: ,

  ∴ ,所以正数 的最小值为

  22. 解:(Ⅰ)设 的公差为 ,

  因为 所以

  解得 或 (舍), .

  故 , .

  (Ⅱ)因为 ,

  所以 .

  故 .

  23. 解:设楼 房每平方米的平均综合费为f(x)元,则

  令 得

  当 时, ;当 时,

  因此 当 时,f(x)取最小值 ;

  答:为了楼房每平方米的平均综合费最少,该楼房应建为15层.

  24.解(Ⅰ)由题设知 ,

  ∴ 令 0得 =1,

  当 ∈(0,1)时, <0,故(0,1)是 的单调减区间。

  当 ∈(1,+∞)时, >0,故(1,+∞)是 的单调递 增区间,因此, =1是 的唯一值点,且为极小值点,从而是最小值点,所以最小值为

  (II)

  设 ,则 ,

  当 时, 即 ,

  当 时 ,

  因此, 在 内单调递减,

  当 时,

  即

  当

  (III)由(I)知 的最小值为1,所以,

  ,对任意 ,成立


  本内容由高三上册试卷栏目提供。

  本内容由高三上册试卷栏目提供。

  想了解更多实用资料网的新沙巴体育投注,请访问: 实用资料

本文来源:/a/3392860.html
延伸阅读
孩子们毕业了,作为毕业班的班主任,你是否给孩子们一个合适的评语了呢?让我们一起看看吧!下面是由出国留学网小编为大家整理的“2020毕业班主任评语”,仅供参考,欢迎大家阅读。2020
2020-07-21
这个学期已经结束了,作为班主任的你,是否应该给学生一句评语呢?那么有哪些评语呢?下面是由出国留学网小编为大家整理的“班主任对学生评语2020”,仅供参考,欢迎大家阅读。班主任对学生
2020-07-21
早安的问候标志着一天的开始!快快准备起床吧!下面是由出国留学网小编为大家整理的“早安问候一句话”,仅供参考,欢迎大家阅读。早安问候一句话【一】1. 把昨天的疲惫让梦带走,
2020-07-20
美好的一天总是从一句正能量的早安开始的,快快准备好迎接新的一天吧!下面是由出国留学网小编为大家整理的“2020早安短语正能量”,仅供参考,欢迎大家阅读。2020早安短语正能量【一】
2020-07-20
简短的早安问候,可以带来一天的快乐!快准备好你的早安问候吧!下面是由出国留学网小编为大家整理的“早安短语一句话”,仅供参考,欢迎大家阅读。早安短语一句话【一】1. 明白的
2020-07-20
评语是对学生的客观评价,是对学生的激励和提醒。下面是小编精心为您整理的“高三上学期班主任评语”,仅供参考,希望您喜欢!更多详细内容请继续关注我们哦。高三上学期班主任评语11.白净小
2019-01-15
转眼,六年级上学期已经结束了。朋友,以下是由小编为大家精心带来的“六年级上册数学期末试卷含答案”,仅供参考,欢迎大家阅读,希望能够对大家有所帮助。一、填空(24分)1、三个连续的偶
2019-01-19
朋友,你是不是要核对一下数学寒假作业答案呢?以下是由小编为大家精心带来的“2019初三上学期数学寒假作业答案”,仅供参考,欢迎大家阅读,希望能够对大家有所帮助哦。2019初三上学期
2019-01-22
小学跟初中还是有所区别的,在最后的小升初试卷中,有些题他们做不出来,如果家长没有多少时间教,这时候也就体现了答案的重要性了。以下就是小编为您整理的“小升初数学试卷及答案苏教版”,内
2018-08-23
转眼之间小升初考试结束已有些时日了。朋友,以下是由出国留学网小编为大家精心整理的“小升初数学试卷试题及答案”,仅供参考,欢迎大家阅读。小升初数学试卷试题及答案一、填空题。(每小题2
2018-08-19