初中数学习题怎么解答,解答的方法又有哪几种呢?不了解的小伙伴们看过来,下面由出国留学网小编为你精心准备了“初中数学习题的解题技巧”,持续关注本站将可以持续获取更多的考试新沙巴体育投注!
初中数学习题的解题技巧
一、选择题的解法
1、直接法:
根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。
2、特殊值法:
(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:
把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:
如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:
根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法
1、数形结合思想:
就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:
事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:
在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
初中数学高效检查数学试卷的方法
一、基本概念检验法
基本概念、法则、公式是同学们复习时最容易忽视的,因此在解题时极易发生概念性错误,所以,概念检验法是一种对症下药的方法。
如:下列函数中,是一次函数的有几个?
(1)y=2x
(2)y=ax+2
(3)y=3x-2
(4)y=2
答:有三个。错了,我们先来回想一下一次函数的定义:一切形如y=kx+b(k不等于0)的函数称为一次函数。对照定义形式,仅(1)和(3)为一次函数,而(2)的a可能为0,故只有两个。
二、对称原理检验法
对称的条件势必导致结论的对称(此结论通常被称为不充足理由律),利用这种对称原理可以对答案进行快速检验。
如:因式分解,(xy+1)(x+1)(y+1)+xy=(xy-y+1)(xy+x+1)结论显然错误。
左端关于x、y对称,所以右端也应关于x、y对称,正确答案应为:(xy+1)(x+1)(y+1)+xy=(xy+y+1)(xy+x+1)。
三、特殊情形检验法
问题的特殊情况往往比一般情况更易解决,因此通过特殊值、特例或极端状态来检验答案是非常快捷的方法,因为矛盾的普遍性寓于特殊性之中。
四、不变量检验法
某些数学问题在变化、变形过程中,其中有的量保持不变,如图形的平移、旋转、翻折时,图形的形状、大小不变,基本量也不变。利用这种变化过程中的不变量,可以直接验证某些答案的正确性。
推荐阅读: