函数定义域怎么求,实用的方法是什么?想了解的小伙伴看过来,下面由出国留学网小编为你精心准备了“怎么求函数定义域”仅供参考,持续关注本站将可以持续获取更多的新沙巴体育投注!
函数的定义
函数在数学上的定义:给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A).那么这个关系式就叫函数关系式,简称函数.
简单来讲,对于两个变量x和y,如果每给定x的一个值,y都有唯一一个确定的值与其对应,那么我们就说y是x的函数。其中,x叫做自变量,y叫做因变量。
怎么求函数定义域
求函数定义域的方法:函数f(x+1)的定义域为(0,1),指的是x取值在0,1之间,那么x+1取值为1,2之间。设y=x+1,则f(x+1)=f(y),在f(y)这个函数中,自变量是y,其取值范围是1,2,所以f(y)的定义域是(1,2)。
求函数的定义域需要从这几个方面入手:
1、分母不为零
2、偶次根式的被开方数非负。
3、对数中的真数部分大于0。
4、指数、对数的底数大于0,且不等于1。
5、y=tanx中x≠kπ+π/2。
6、y=cotx中x≠kπ。
已知函数解析式时:只需要使得函数表达式中的所有式子有意义
1、表达式中出现分式时:分母一定满足不为0;
2、 表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数);
3、表达式中出现指数时:当指数为0时,底数一定不能为0;
4、根号与分式结合,根号开偶次方在分母上时:根号下大于0;
5、表达式中出现指数函数形式时:底数和指数都含有x,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1);
6、表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1。[ f(x)=logx(x?-1) ]。
推荐阅读: